A Statistical-Physical Model of Interference in Diffusion-Based Molecular Nanonetworks

نویسندگان

  • Massimiliano Pierobon
  • Ian F. Akyildiz
چکیده

Molecular nanonetworks stand at the intersection of nanotechnology, biotechnology, and network engineering. The research on molecular nanonetworks proposes the interconnection of nanomachines through molecule exchange. Amongst different solutions for the transport of molecules between nanomachines, the most general is based on free diffusion. The objective of this paper is to provide a statistical–physical modeling of the interference when multiple transmitting nanomachines emit molecules simultaneously. This modeling stems from the same assumptions used in interference study for radio communications, namely, a spatial Poisson distribution of transmitters having independent and identically distributed emissions, while the specific molecule emissions model is in agreement with a chemical description of the transmitters. As a result of the property of the received molecular signal of being a stationary Gaussian Process (GP), the statistical–physical modeling is operated on its Power Spectral Density (PSD), for which it is possible to obtain an analytical expression of the log-characteristic function. This expression leads to the estimation of the received PSD probability distribution, which provides a complete model of the interference in diffusion-based molecular nanonetworks. Numerical results in terms of received PSD probability distribution and probability of interference are presented to compare the proposed statistical–physical model with the outcomes of simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fundamentals of Diffusion-Based Molecular Communication in Nanonetworks

Molecular communication (MC) is a promising bio-inspired paradigm for the interconnection of autonomous nanotechnology-enabled devices, or nanomachines, into nanonetworks. MC realizes the exchange of information through the transmission, propagation, and reception of molecules, and it is proposed as a feasible solution for nanonetworks. This idea is motivated by the observation of nature, where...

متن کامل

Interference effects on modulation techniques in diffusion based nanonetworks

Currently, Communication via Diffusion (CvD) is one of the most prominent systems in nanonetworks. In this paper, we evaluate the effects of two major interference sources, Intersymbol Interference (ISI) and Co-channel Interference (CCI) in the CvD system using different modulation techniques. In the analysis of this paper, we use two modulation techniques, namely Concentration Shift Keying (CS...

متن کامل

Robust Modulation Technique for Diffusion-based Molecular Communication in Nanonetworks

Diffusion-based molecular communication over nanonetworks is an emerging communication paradigm that enables nanomachines to communicate by using molecules as the information carrier. For such a communication paradigm, Concentration Shift Keying (CSK) has been considered as one of the most promising techniques for modulating information symbols, owing to its inherent simplicity and practicality...

متن کامل

On the Detection of Binary Concentration-encoded Unicast Molecular Communication in Nanonetworks

Molecular communication is a new communication technique where transmitter and receiver communicate by transmitting molecules and correspondingly modulating their specific characteristics. Molecular communication is being considered as a new physical layer (PHY) option for a vast number of communicating nanomachines that form “nanonetworks.” Thus it has become a promising option for a large num...

متن کامل

N3Sim: Simulation framework for diffusion-based molecular communication nanonetworks

Diffusion-based molecular communication is a promising bio-inspired paradigm to implement nanonetworks, i.e., the interconnection of nanomachines. The peculiarities of the physical channel in diffusion-based molecular communication require the development of novel models, architectures and protocols for this new scenario, which need to be validated by simulation. N3Sim is a simulation framework...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Communications

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2014